학술논문

Modulation of cardiac connexin-43 by omega-3 fatty acid ethyl-ester supplementation demonstrated in spontaneously diabetic rats
Document Type
TEXT
Source
Physiological research | 2015 Volume:64 | Number:6
Subject
Fyziologie člověka a srovnávací fyziologie
diabetes mellitus
omega-3 mastné kyseliny
omega-3 fatty acids
cardiac connexin-43
PKC
ultrastructure
14
612
Language
English
Abstract
J. Radosinska, L. H. Kurahara, K. Hiraishi, C. Viczenczova, T. Egan Benova, B. Szeiffova Bacova, V: Dosenko, J. Navarova, B. Obsitnik, I. Imanaga, T. Soukup, N. Tribulova.
Obsahuje bibliografii
Previous data suggest that type 1 diabetes mellitus leads to the deterioration of myocardial intercellular communication mediated by connexin-43 (Cx43) channels. We therefore aimed to explore Cx43, PKC signaling and ultrastructure in non -treated and omega-3 fatty acid (omega-3) treated spontaneously diabetic Goto-Kakizaki (GK) rats considered as type 2 diabetes model. Four-week-old GK and non-diabetic Wistar-Clea rats were fed omega -3 (200 mg/kg/day) for 2 months and compared with untreated rats. Realtime PCR and immunoblotting were performed to determine Cx43, PKC- epsilon and PKC-delta expression. In situ Cx43 was examined by immunohistochemistry and subcellular alterations by electr on microscopy. Omega-3 intake reduced blood glucose, triglycerides, and cholesterol in diabetic rats and this was associated with improved integrity of cardiomyocytes and capillaries in the heart. Myocardial Cx43 mRNA and protein levels were higher in diab etic versus non- diabetic rats and were further enhanced by omega-3. The ratio of phosphorylated (functional) to non-phosphorylated Cx43 was lower in diabetic compared to non- diabetic rats but was increased by omega-3, in part due to up -regulation of PKC-epsilon. In addition, proapoptotic PKC-delta expression was decreased. In conclusion, spontaneously diabetic rats at an early stage of disease benefit from omega-3 intake due to its hypoglycemic effect, upregulation of myocardial Cx43, and preservation of cardiovascular ultrastructure. These findings indicates that supplementation of omega-3 may be beneficial also in the management of diabetes in humans.