학술논문

hsBAFF-upregulated intracellular free Ca2+ homeostasis regulates ERK1/2 activity and cell proliferation in B cells in vitro
Document Type
TEXT
Source
Subject
Language
English
Multiple languages
Abstract
J. Q. Liang, W. Zhang, L. Wen, W. Gao, S. Q. Zhang, L. Chen.
Obsahuje bibliografii
We studied hsBAFF activity in in vitro mouse splenic B cells. hsBAFF effects on intracellular free Ca 2+ concentration ([Ca 2+ ] i ) were assayed, using a laser scanning confocal microscope with fluorescent probe, Fluo-3/AM. We showed that treatment of B cells with 0.5-5 μ g/ml hsBAFF resulted in significantly higher [Ca 2+ ] i levels in a dose-dependent fashion at 12 and 24 h, respectively (p<0.05 or p<0.01 vs. control). Furthermore, we noticed that 2.5 μ g/ml hsBAFF-treated cells were significantly resistant to decrease of cellular viability induced by thapsigargin (Tg), an endoplasmic reticulum (ER) Ca 2+ -ATPase inhibitor (p<0.05 hsBAFF plus Tg group vs. Tg group). Thus hsBAFF may promote B cell survival by direct upregulation of [Ca 2+ ] i physiological homeostasis contri buting to prevention of [Ca 2+ ] i dysfunction. Using immunocytochemistry and Western blot analysis, we found that the activation of ERK1/2 due to hsBAFF was triggered by a [Ca 2+ ] i -dependent pathway, leading to elevation of B cell proliferation. This is supported by the findings that intracellular Ca 2+ chelator BAPTA/AM attenuated phosphorylated ERK1/2 expression and cell proliferation in hsBAFF-stimulated B cells. hsBAFF-stimulated B cell proliferation was obviously reduced by mitogen extracellular kinase 1/2 (MEK1/2, upstream of ERK1/2) inhibitor U0126. Taken together, the main finding of this study is that hsBAFF elicits higher but homeostatic [Ca 2+ ] i levels, which regulates ERK1/2 activity and cell proliferation in in vitro B cells.