학술논문

Automatic Co-Design of Aerial Robots Using a Graph Grammar
Document Type
Conference
Source
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Intelligent Robots and Systems (IROS), 2022 IEEE/RSJ International Conference on. :11260-11267 Oct, 2022
Subject
Bioengineering
Components, Circuits, Devices and Systems
Computing and Processing
General Topics for Engineers
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Shape
Pipelines
Transportation
Autonomous aerial vehicles
Search problems
Topology
Grammar
Language
ISSN
2153-0866
Abstract
Unmanned aerial vehicles (UAVs) have broad applications including disaster response, transportation, photography, and mapping. A significant bottleneck in the development of UAVs is the limited availability of automatic tools for task-specific co-design of a UAV's shape and controller. The development of such tools is particularly challenging as UAVs can take many forms, including fixed-wing planes, radial copters, and hybrid topologies, with each class of topology showing different advantages. In this work, we present a computational design pipeline for UAVs based on a graph grammar that can search across a wide range of topologies. Graphs generated by the grammar encode different topologies and component selections, while continuous parameters encode the dimensions and properties of each component. We further augment the shape representation with deformation cages, which allow expressing a variety of wing shapes. Each UAV design is associated with an LQR controller with tunable continuous parameters. To search over this complex discrete and continuous design space, we develop a hybrid algorithm that combines discrete graph search strategies and gradient-based continuous optimization methods using a differentiable UAV simulator. We evaluate our pipeline on a set of simulated flight tasks requiring dynamic motions, showing that it discovers novel UAV designs that outperform canonical UAVs typically made by engineers.