학술논문

Game Theory-Based Optimal Cooperative Path Planning for Multiple UAVs
Document Type
Periodical
Source
IEEE Access Access, IEEE. 10:108034-108045 2022
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Path planning
Game theory
Task analysis
Cost function
Autonomous aerial vehicles
Particle swarm optimization
Nash equilibrium
Cooperative path planning
UAV
Stackelberg-Nash game
PSO
Language
ISSN
2169-3536
Abstract
This paper presents new cooperative path planning algorithms for multiple unmanned aerial vehicles (UAVs) using Game theory-based particle swarm optimization (GPSO). First, the formation path planning is formulated into the minimization of a cost function that incorporates multiple objectives and constraints for each UAV. A framework based on game theory is then developed to cast the minimization into the problem of finding a Stackelberg-Nash equilibrium. Next, hierarchical particle swarm optimization algorithms are developed to obtain the global optimal solution. Simulation results show that the GPSO algorithm can generate efficient and feasible flight paths for multiple UAVs, outperforming other path planning methods in terms of convergence rate and flexibility. The formation can adjust its geometrical shape to accommodate a working environment. Experimental tests on a group of three UAVs confirm the advantages of the proposed approach for a practical application.