학술논문

Blind Source Separation for MT-InSAR Analysis With Structural Health Monitoring Applications
Document Type
Periodical
Source
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of. 15:7605-7618 2022
Subject
Geoscience
Signal Processing and Analysis
Power, Energy and Industry Applications
Monitoring
Strain
Synthetic aperture radar
Time series analysis
Bridges
Hyperspectral imaging
Buildings
Blind source separation
interferometric synthetic aperture radar (InSAR)
multitemporal remote sensing
structural health monitoring
Language
ISSN
1939-1404
2151-1535
Abstract
Monitoring large areas of the Earth's surface is possible thanks to the availability of remote sensing data obtained by a large collection of diverse satellites orbiting the Earth. Specifically, multitemporal interferometric synthetic aperture radar (MT-InSAR) techniques supply the structural community with time series of line-of-sight displacements of terrain or structures, such as bridges or buildings, resulting from causes such as thermal expansion, contraction, and terrain deformation. The analysis of the different deformation signals observed is crucial in order to identify the different phenomena that cause the deformation. In this article, we explore the possibility of applying blind source separation algorithms to MT-InSAR, with the aim of developing methods towards automatic identification of different deformation patterns both in buildings and structures. We validate the proposed methodology using both synthetically generated datasets and real MT-InSAR data. We also provide a comparison with other similar methods. Our results demonstrate that InSAR time-series analysis can benefit from the use of the proposed blind source separation approach. Furthermore, the proposed technique is robust to the noise which is usually present in MT-InSAR data. This opens the door for monitoring infrastructure at scale over very large areas, helping to monitor civil infrastructures, and providing relevant insights to asset owners regarding the performance of such structures over time.