학술논문

Double Deep Q-Learning With Prioritized Experience Replay for Anomaly Detection in Smart Environments
Document Type
Periodical
Source
IEEE Access Access, IEEE. 10:60836-60848 2022
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Anomaly detection
Detectors
Task analysis
Q-learning
Intelligent sensors
Monitoring
Time series analysis
human activity recognition
machine learning
pattern recognition
safety
Language
ISSN
2169-3536
Abstract
Anomaly detection in smart environments is important when dealing with rare events, which can be safety-critical to individuals or infrastructure. Safety-critical means in this case, that these events can be a threat to the safety of individuals (e.g. a person falling to the ground) or to the security of infrastructure (e.g. unauthorized access to protected facilities). However, recognizing abnormal events in smart environments is challenging, because of the complex and volatile nature of the data recorded by monitoring sensors. Methodologies proposed in the literature are frequently domain-specific and are subject to biased assumptions about the underlying data. In this work, we propose the adaption of a deep reinforcement learning algorithm, namely double deep q-learning (DDQN), for anomaly detection in smart environments. Our proposed anomaly detector directly learns a decision-making function, which can classify rare events based on multivariate sequential time series data. With an emphasis on improving the performance in rare event classification tasks, we extended the algorithm with a prioritized experience replay (PER) strategy, and showed that the PER extension yields an increase in detection performance. The adaption of the improved version of the DDQN reinforcement learning algorithm for anomaly detection in smart environments is the major contribution of this work. Empirical studies on publicly available real-world datasets demonstrate the effectiveness of our proposed solution. Here specifically, we use a dataset for fall and for occupancy detection to evaluate the solution proposed in this work. Our solution yields comparable detection performance to previous work, and has the additional advantages of being adaptable to different environments and capable of online learning.