학술논문

Spatial Stochastic Model of the Pre-B Cell Receptor
Document Type
Periodical
Source
IEEE/ACM Transactions on Computational Biology and Bioinformatics IEEE/ACM Trans. Comput. Biol. and Bioinf. Computational Biology and Bioinformatics, IEEE/ACM Transactions on. 20(1):683-693 Jan, 2023
Subject
Bioengineering
Computing and Processing
Stochastic processes
Mathematical models
Computer architecture
Microprocessors
Data models
Pathology
Particle tracking
Agent based models
cell signaling
rule-based models
stochastic simulation methods
Language
ISSN
1545-5963
1557-9964
2374-0043
Abstract
Survival and proliferation of immature B lymphocytes requires expression and tonic signaling of the pre-B cell receptor (pre-BCR). This low level, ligand-independent signaling is likely achieved through frequent, but short-lived, homo interactions. Tonic signaling is also central in the pathology of precursor B acute lymphoblastic leukemia (B-ALL). In order to understand how repeated, transient events can lead to sustained signaling and to assess the impact of receptor accumulation induced by the membrane landscape, we developed a spatial stochastic model of receptor aggregation and downstream signaling events. Our rule- and agent-based model builds on previous mature BCR signaling models and incorporates novel parameters derived from single particle tracking of pre-BCR on surfaces of two different B-ALL cell lines, 697 and Nalm6. Live cell tracking of receptors on the two cell lines revealed characteristic differences in their dimer dissociation rates and diffusion coefficients. We report here that these differences affect pre-BCR aggregation and consequent signal initiation events. Receptors on Nalm6 cells, which have a lower off-rate and lower diffusion coefficient, more frequently form higher order oligomers than pre-BCR on 697 cells, resulting in higher levels of downstream phosphorylation in the Nalm6 cell line.