학술논문

Test Results of the MQYYM: A 90 Mm NbTi Quadrupole Magnet Option for HL-LHC
Document Type
Periodical
Source
IEEE Transactions on Applied Superconductivity IEEE Trans. Appl. Supercond. Applied Superconductivity, IEEE Transactions on. 32(6):1-5 Sep, 2022
Subject
Fields, Waves and Electromagnetics
Engineered Materials, Dielectrics and Plasmas
Superconducting magnets
Magnetic field measurement
Training
Apertures
Heating systems
Coils
Magnetic tunneling
LHC luminosity upgrade
NbTi
quadrupole
superconducting accelerator magnet
Language
ISSN
1051-8223
1558-2515
2378-7074
Abstract
For the HL-LHC project, a 90 mm NbTi cos(2θ) double aperture quadrupole magnet with an operating gradient of 120 T/m at 1.9 K has been designed as an option to replace the 70 mm aperture LHC quadrupole MQY. CEA in collaboration with CERN designed and manufactured a single aperture short model magnet with a magnetic length of 1.215 m at 1.9 K called MQYYM. The MQYYM cold test occurred at CEA at 4.2 K in a vertical cryogenic station. During the power test, the operating gradient at 1.9 K has been reached after two training quenches. All along the test, magnetic and mechanical measurements were done using respectively a rotating probe and strain gauges. This paper describes the performance of the MQYYM at 4.2 K and gives an analysis of the data acquired during the test, including training behavior, quench detection, protection and field quality measurements.