학술논문

NPT-Loss: Demystifying Face Recognition Losses With Nearest Proxies Triplet
Document Type
Periodical
Source
IEEE Transactions on Pattern Analysis and Machine Intelligence IEEE Trans. Pattern Anal. Mach. Intell. Pattern Analysis and Machine Intelligence, IEEE Transactions on. 45(12):15249-15259 Dec, 2023
Subject
Computing and Processing
Bioengineering
Training
Measurement
Face recognition
Training data
Standards
Additives
Upper bound
proxy metric losses
normalised softmax
ArcFace
CosFace
proxy-NCA
Language
ISSN
0162-8828
2160-9292
1939-3539
Abstract
Face recognition (FR) using deep convolutional neural networks (DCNNs) has seen remarkable success in recent years. One key ingredient of DCNN-based FR is the design of a loss function that ensures discrimination between various identities. The state-of-the-art (SOTA) solutions utilise normalised Softmax loss with additive and/or multiplicative margins. Despite being popular and effective, these losses are justified only intuitively with little theoretical explanations. In this work, we show that under the LogSumExp (LSE) approximation, the SOTA Softmax losses become equivalent to a proxy-triplet loss that focuses on nearest-neighbour negative proxies only. This motivates us to propose a variant of the proxy-triplet loss, entitled Nearest Proxies Triplet (NPT) loss, which unlike SOTA solutions, converges for a wider range of hyper-parameters and offers flexibility in proxy selection and thus outperforms SOTA techniques. We generalise many SOTA losses into a single framework and give theoretical justifications for the assertion that minimising the proposed loss ensures a minimum separability between all identities. We also show that the proposed loss has an implicit mechanism of hard-sample mining. We conduct extensive experiments using various DCNN architectures on a number of FR benchmarks to demonstrate the efficacy of the proposed scheme over SOTA methods.