학술논문

Deep Neural Network Trained on Surface ECG Improves Diagnostic Accuracy of Prior Myocardial Infarction Over Q Wave Analysis
Document Type
Conference
Source
2021 Computing in Cardiology (CinC) Computing in Cardiology (CinC), 2021. 48:1-4 Sep, 2021
Subject
Bioengineering
Computing and Processing
Signal Processing and Analysis
Deep learning
Training
Surface waves
Neural networks
Manuals
Myocardium
Electrocardiography
Language
ISSN
2325-887X
Abstract
Clinical screening of myocardial infarction is important for preventative treatment and risk stratification in cardiology practice, however current detection by electrocardiogram Q-wave analysis provides only modest accuracy for assessing prior cardiac events. We set out to evaluate the ability of a deep neural network trained on the electrocardiogram to identify patients with clinical history of myocardial infarction. We assessed 608 patients at two academic centers with adjudicated history of myocardial infarction. Surface electrocardiograms were used to train a neural network-based model that classifies patients with and without a history of infarction. Endpoints were assessed by clinical record review and accuracy of the model was compared against the manual assessment of pathologic Q waves. The neural network outperformed the accuracy of pathologic Q waves (62%). In training, the model accuracy converged to >98%. Validation was performed by cross-validation (k=5) with validation accuracy 71 ± 5%. Receiver-operator characteristics analysis resulted in a c-statistic of 0.730. Deep learning of a 12-lead ECG can identify features of prior myocardial injury more accurately than clinical Q-wave analysis and may serve as a valuable clinical screening tool.