학술논문

A Detailed Survey on Machine Intelligence Based Frameworks for Software Defect Prediction
Document Type
Conference
Source
2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS) Computing, Communication, and Intelligent Systems (ICCCIS),2021 International Conference on. :360-365 Feb, 2021
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Support vector machines
Productivity
Machine learning
Programming
Software
Software measurement
Testing
defect prediction
machine learning
Software systems
Language
Abstract
Software defect prediction has an important role to play in improving the quality of programming and helps to reduce the time and cost of programming testing. AI focuses on the advancement of computer programs that can be instructed to develop and change at a time when new information is presented. The capacity of a machine to improve its exposure depends on past results. Machine learning improves the productivity of human learning, finds new things or structures that are obscured to people, and discovers important data in the archive. For this reason, distinctive machine learning procedures are used to remove unnecessary, incorrect information from the data set. Software defect prediction is seen as an exceptionally significant capability when a product project is arranged and a much larger effort is expected to address this intricate issue using product measurement and deformity dataset. Metrics are the link between the mathematical value and are subsequently applied to the product for anticipation of deformity. The essential objective of this study paper is to comprehend the existing strategies for foreseeing programming deformity.