학술논문

Excess Heat Capacity in Mo/Au Transition Edge Sensor Bolometric Detectors
Document Type
Periodical
Source
IEEE Transactions on Applied Superconductivity IEEE Trans. Appl. Supercond. Applied Superconductivity, IEEE Transactions on. 31(5):1-4 Aug, 2021
Subject
Fields, Waves and Electromagnetics
Engineered Materials, Dielectrics and Plasmas
Superconducting photodetectors
Microfabrication
Thin film sensors
Surface contamination
superconducting photodetectors
surface contamination
thin film sensors
Language
ISSN
1051-8223
1558-2515
2378-7074
Abstract
Excess heat capacity in a bolometric detector has the consequence of increasing or leading to multiple device time constants. The Mo/Au bilayer transition edge sensor (TES) bolometric detectors initially fabricated for the high resolution mid-infrared spectrometer (HIRMES) exhibited two response thermalization scales, one of which is a few times longer than estimates based upon the properties of the bulk materials employed in the design. The relative contribution of this settling time to the overall time response of the detectors is roughly proportional to the pixel area, which ranges between ∼0.3 and 2.6 mm 2 . Use of laser ablation to remove sections of the silicon membranes comprising the pixels results in a detector response with a smaller contribution from the secondary time constant. Additional information about the nature of this excess heat capacity is gleaned from glancing incidence X-ray diffraction, which reveals the presence of molybdenum silicides near the silicon surface which is a consequence of the bi-layer deposition. Quantitative analysis of the concentration of excess molybdenum, estimated with secondary ion mass spectroscopy, is commensurate to the additional heat capacity needed to explain the anomalous time response of the detectors.