학술논문

Morphological Reconstruction Improves Microvessel Mapping in Super-Resolution Ultrasound
Document Type
Periodical
Source
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control IEEE Trans. Ultrason., Ferroelect., Freq. Contr. Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on. 68(6):2141-2149 Jun, 2021
Subject
Fields, Waves and Electromagnetics
Ultrasonic imaging
Optical filters
Spatial resolution
Optical imaging
Image reconstruction
Superresolution
Location awareness
Acoustic cavitation
super-resolution (SR)
ultrasound (US) imaging
Language
ISSN
0885-3010
1525-8955
Abstract
Generation of super-resolution (SR) ultrasound (US) images, created from the successive localization of individual microbubbles in the circulation, has enabled the visualization of microvascular structure and flow at a level of detail that was not possible previously. Despite rapid progress, tradeoffs between spatial and temporal resolution may challenge the translation of this promising technology to the clinic. To temper these tradeoffs, we propose a method based on morphological image reconstruction. This method can extract from ultrafast contrast-enhanced US (CEUS) images hundreds of microbubble peaks per image (312-by-180 pixels) with intensity values varying by an order of magnitude. Specifically, it offers a fourfold increase in the number of peaks detected per frame, requires on the order of 100 ms for processing, and is robust to additive electronic noise (down to 3.6-dB CNR in CEUS images). By integrating this method to an SR framework, we demonstrate a sixfold improvement in spatial resolution, when compared with CEUS, in imaging chicken embryo microvessels. This method that is computationally efficient and, thus, scalable to large data sets may augment the abilities of SR-US in imaging microvascular structure and function.