학술논문

Active Queue Management Supporting TCP Flows Using Disturbance Observer and Smith Predictor
Document Type
Periodical
Source
IEEE Access Access, IEEE. 8:173401-173413 2020
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Delay effects
PD control
Disturbance observers
Control theory
Receivers
Delays
Active queue management (AQM)
control theory
disturbance observer (DOB)
quality of services (QoS)
Smith predictor (SP)
time delay
transmission control protocol (TCP)
Language
ISSN
2169-3536
Abstract
Active queue management (AQM) is a technique to avoid serious congestion of the transmission control protocol (TCP) flows at a router. AQM based on control theory, which utilizes congestion controllers such as proportional-derivative (PD) controller or proportional-integral-derivative (PID) controller, has been previously proposed. In addition, disturbance observer (DOB) has been utilized to compensate for modeling error of a TCP/AQM congestion control system. However, the DOB-based controllers cannot cope with a large time delay in TCP/AQM networks. Although one of the effective time delay compensators is Smith predictor (SP), the implementation of the DOB and SP in an integrated manner has not been accomplished, because of saturation due to the input limit of packet drop probability. In this paper, a novel TCP/AQM congestion control system with the DOB and SP considering the saturation function is proposed to compensate for the modeling error and time delay simultaneously. Simulation results show that the proposed controller provides better throughput and goodput than conventional controllers. One of the simulations assume that the propagation delay and bottleneck link capacity are set to 100 ms and 100 Mbps, respectively. Under this assumption, it is confirmed that the proposed controller achieves a goodput of 99.55 Mbps whereas the classical PID controller and PD controller with DOB achieve 99.23 Mbps and 99.24 Mbps, respectively.