학술논문

Individualized closed-loop anesthesia through patient model partitioning
Document Type
Conference
Source
2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) Engineering in Medicine & Biology Society (EMBC), 2020 42nd Annual International Conference of the IEEE. :361-364 Jul, 2020
Subject
Bioengineering
Brain modeling
Robustness
Data models
Delays
Anesthesia
Optimization
Drugs
Language
ISSN
2694-0604
Abstract
Closed-loop controlled drug dosing has the potential of revolutionizing clinical anesthesia. However, inter-patient variability in drug sensitivity poses a central challenge to the synthesis of safe controllers. Identifying a full individual pharmacokinetic–pharmacodynamic (PKPD) model for this synthesis is clinically infeasible due to limited excitation of PKPD dynamics and presence of unmodeled disturbances. This work presents a novel method to mitigate inter-patient variability. It is based on: 1) partitioning an a priori known model set into subsets; 2) synthesizing an optimal robust controller for each subset; 3) classifying patients into one of the subsets online based on demographic or induction phase data; 4) applying the associated closed-loop controller. The method is investigated in a simulation study, utilizing a set of 47 clinically obtained patient models. Results are presented and discussed.Clinical relevance-The proposed method is easy to implement in clinical practice, and has potential to reduce the impact from surgical stimulation disturbances, and to result in safer closed-loop anesthesia with less risk of under- and over dosing.