학술논문

Evaluation of Static Potential Integrals on Triangular Domains
Document Type
Periodical
Source
IEEE Access Access, IEEE. 8:99806-99819 2020
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Electric potential
Integral equations
Method of moments
Limiting
Robustness
Indexes
Kernel
moment methods
numerical analysis
singular integrals
numerical integration
Language
ISSN
2169-3536
Abstract
Static potential integrals for constant and linear sources on triangles are derived in a straightforward way. The new representations, as presented, are robust with respect to machine evaluation in important limiting cases. The potential integrals comprise up to six functions, each dependent on the relative position and orientation (with respect to an observation point) of a vertex and edge, respectively, of the source triangle. Gradients of the potentials are derived by differentiation, thus preserving relations between the representations. Each such vertex function reveals any anomalous functional behavior near its associated vertex or edge, which is useful information for devising test integral schemes. Potential plots in the source plane of an equilateral triangle illustrate such behavior, as do similar plots for each vertex function and gradient components near their associated edge and vertex.