학술논문

Time Series Forecasting for Self-Aware Systems
Document Type
Periodical
Source
Proceedings of the IEEE Proc. IEEE Proceedings of the IEEE. 108(7):1068-1093 Jul, 2020
Subject
General Topics for Engineers
Engineering Profession
Aerospace
Bioengineering
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Fields, Waves and Electromagnetics
Geoscience
Nuclear Engineering
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Power, Energy and Industry Applications
Communication, Networking and Broadcast Technologies
Photonics and Electrooptics
Forecasting
Time series analysis
Cognition
Task analysis
Self-aware
Predictive models
Feature engineering
forecasting competition
self-aware computing
time series analysis
time series forecasting
Language
ISSN
0018-9219
1558-2256
Abstract
Modern distributed systems and Internet-of-Things applications are governed by fast living and changing requirements. Moreover, they have to struggle with huge amounts of data that they create or have to process. To improve the self-awareness of such systems and enable proactive and autonomous decisions, reliable time series forecasting methods are required. However, selecting a suitable forecasting method for a given scenario is a challenging task. According to the “No-Free-Lunch Theorem,” there is no general forecasting method that always performs best. Thus, manual feature engineering remains to be a mandatory expert task to avoid trial and error. Furthermore, determining the expected time-to-result of existing forecasting methods is a challenge. In this article, we extensively assess the state-of-the-art in time series forecasting. We compare existing methods and discuss the issues that have to be addressed to enable their use in a self-aware computing context. To address these issues, we present a step-by-step approach to fully automate the feature engineering and forecasting process. Then, following the principles from benchmarking, we establish a level-playing field for evaluating the accuracy and time-to-result of automated forecasting methods for a broad set of application scenarios. We provide results of a benchmarking competition to guide in selecting and appropriately using existing forecasting methods for a given self-aware computing context. Finally, we present a case study in the area of self-aware data-center resource management to exemplify the benefits of fully automated learning and reasoning processes on time series data.