학술논문

Landslide Geohazard Assessment with Convolutional Neural Networks Using Sentinel-2 Imagery Data
Document Type
Conference
Source
IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium Geoscience and Remote Sensing Symposium, IGARSS 2019 - 2019 IEEE International. :9646-9649 Jul, 2019
Subject
Aerospace
Geoscience
Signal Processing and Analysis
Terrain factors
Convolutional neural networks
Satellites
Training
Data models
Machine learning
Monitoring
Landslide prediction
image processing
Sentinel-2
deep learning
machine learning
CNNs (Convolutional Neural Networks)
geohazard monitoring
Language
ISSN
2153-7003
Abstract
In this paper, the authors aim to combine the latest state of the art models in image recognition with the best publicly available satellite images to create a system for landslide risk mitigation. We focus first on landslide detection and further propose a similar system to be used for prediction. Such models are valuable as they could easily be scaled up to provide data for hazard evaluation, as satellite imagery becomes increasingly available. The goal is to use satellite images and correlated data to enrich the public repository of data and guide disaster relief efforts for locating precise areas where landslides have occurred. Different image augmentation methods are used to increase diversity in the chosen dataset and create more robust classification. The resulting outputs are then fed into variants of 3-D convolutional neural networks. A review of the current literature indicates there is no research using CNNs (Convolutional Neural Networks) and freely available satellite imagery for classifying landslide risk. The model has shown to be ultimately able to achieve a significantly better than baseline accuracy.