학술논문

Phenotypic Profiling of High Throughput Imaging Screens with Generic Deep Convolutional Features
Document Type
Conference
Source
2019 16th International Conference on Machine Vision Applications (MVA) Machine Vision Applications (MVA), 2019 16th International Conference on. :1-4 May, 2019
Subject
Components, Circuits, Devices and Systems
Computing and Processing
Robotics and Control Systems
Signal Processing and Analysis
Social networking (online)
Generative adversarial networks
Gallium nitride
Generators
Bridges
Data models
Neural networks
Language
Abstract
While deep learning has seen many recent applications to drug discovery, most have focused on predicting activity or toxicity directly from chemical structure. Phenotypic changes exhibited in cellular images are also indications of the mechanism of action (MoA) of chemical compounds. In this paper, we show how pre-trained convolutional image features can be used to assist scientists in discovering interesting chemical clusters for further investigation. Our method reduces the dimensionality of raw fluorescent stained images from a high throughput imaging (HTI) screen, producing an embedding space that groups together images with similar cellular phenotypes. Running standard unsupervised clustering on this embedding space yields a set of distinct phenotypic clusters. This allows scientists to further select and focus on interesting clusters for downstream analyses. We validate the consistency of our embedding space qualitatively with t-sne visualizations, and quantitatively by measuring embedding variance among images that are known to be similar. Results suggested the usefulness of our proposed workflow using deep learning and clustering and it can lead to robust HTI screening and compound triage.