학술논문

An Assessment of Non-geophysical Effects in Spaceborne GNSS Reflectometry Data From the UK TechDemoSat-1 Mission
Document Type
Periodical
Source
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of. 10(7):3418-3429 Jul, 2017
Subject
Geoscience
Signal Processing and Analysis
Power, Energy and Industry Applications
Receivers
Gain
Sea surface
Instruments
Satellites
Gain control
Ambient noise
attitude control
global navigation satellite system (GNSS)
GNSS reflectometry (GNSS-R)
GNSS remote sensing
ocean remote sensing
radiofrequency interference (RFI)
spaceborne radar
TechDemoSat-1 (TDS-1)
Language
ISSN
1939-1404
2151-1535
Abstract
An assessment of non-geophysical effects in spaceborne global navigation satellite system reflectometry (GNSS-R) data from the UK TechDemoSat-1 (TDS-1) mission is presented. TDS-1 was launched in July 2014 and provides the first new spaceborne GNSS-R data since the pioneering UK-disaster monitoring constellation experiment in 2003. Non-geophysical factors evaluated include ambient L-band noise, instrument operating mode, and platform-related parameters. The findings are particularly relevant to users of uncalibrated GNSS-R signals for the retrieval of geophysical properties of the Earth surface. Substantial attitude adjustments of the TDS-1 platform are occasionally found to occur that introduce large uncertainties in parts of the TDS-1 GNSS-R dataset, particularly for specular points located outside the main beam of the nadir antenna where even small attitude errors can lead to large inaccuracies in the geophysical inversion. Out of eclipse however, attitude adjustments typically remain smaller than 1.5°, with larger deviations of up to 10° affecting less than 5% of the overall sun-lit data. Global maps of L1 ambient noise are presented for both automatic and programmed gain modes of the receiver, revealing persistent L-band noise hotspots along the Equator that can reach up to 2.5 dB, most likely associated with surface reflection of signals from other GNSS transmitters and constellations. Sporadic high-power noise events observed in certain regions point to sources of human origin. Relevant conclusions of this study are that platform attitude knowledge is essential and that radiometric calibration of GNSS-R signals should be used whenever possible. Care should be taken when considering using noise measurements over the equatorial oceans for calibration purposes, as ambient noise and correlated noise in delay–Doppler maps both show more variation than might be expected over these regions.