학술논문

New Snow Water Equivalent Processing System With Improved Resolution Over Europe and its Applications in Hydrology
Document Type
Periodical
Source
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of. 10(2):428-436 Feb, 2017
Subject
Geoscience
Signal Processing and Analysis
Power, Energy and Industry Applications
Snow
Microwave radiometry
Satellites
Satellite broadcasting
Europe
Radiometers
Spatial resolution
hydrology
remote sensing
snow
Language
ISSN
1939-1404
2151-1535
Abstract
The presence and amount of snow, given in terms of snow water equivalent (SWE), is an essential physical characteristic influencing climate and hydrological processes. For the recent decades, remote sensing has proven to be a valuable tool for deriving regional and global scale information on SWE. However, determining SWE reliably from remote sensing data for many local-scale applications remains a challenge. Microwave radiometers are currently the best option to determine SWE since they respond to snow depth and density. Further, weather phenomena and solar illumination are not of concern. However, for some purposes the typical spatial resolution of space-borne radiometers (in the order of tens of kilometers) is not sufficient. In this study, the spatial resolution of existing operational SWE products (GlobSnow and H-SAF product portfolios) is improved by performing assimilation of ground truth observations of snow depth and space borne derived SWE estimates in a resolution grid of 0.05° × 0.05° (approximately 5 km × 5 km). Some modifications to the SWE algorithm and the applied auxiliary data (such as an improved forest stem volume map) are introduced. We will present how the improved resolution enhances spatial details in the retrieved SWE, while the validation results show that in terms of accuracy, the new product is on similar level than the existing operational products. Finally, the gained new SWE estimates are ingested into the HOPS hydrological model in the Ounasjoki river basin. The results indicate that simulation of snow melt driven river discharge can be improved by ingesting the retrieved SWE data into a hydrological model.