학술논문

2nd generation cameras for LCLS and the new challenges of high repetition rates at LCLS-II
Document Type
Conference
Source
2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2014 IEEE. :1-2 Nov, 2014
Subject
Nuclear Engineering
Cameras
Detectors
Prototypes
Feature extraction
Optical fiber communication
Application specific integrated circuits
Linear particle accelerator
Language
Abstract
With the experience of the first years of operation of the Linac Coherent Light Source (LCLS), SLAC developed a 2nd generation camera system with improved features and performance. The first camera to be deployed is the ePix-One, a compact camera which is a 155 mm long box with a quadratic front face of 52×52 mm2 which will feature 4 ASICs, either the ePIX100 or the ePIX10k, bump-bonded with a single sensor offering 35 × 38 mm2 active area. Combined with the ePIX100 hybrid pixel module which features 50 µm pixels and is targeted for X-ray Photon Correlation Spectroscopy and as a detector in wavelength dispersive spectrometer setups this will result in a 0.5Mpixel camera. Whereas the 100 µm pixels of ePIX10k, targeted towards protein crystallography, imaging and pump probe experiments, will provide a camera of 135kpixel. The camera uses simple Peltier/water cooling in combination with dry nitrogen purge against condensation. The compact housing and the simple interface (26pin cable & optical fiber) eases deployment and gives experimenters more flexibility in utilizing the camera where needed. The current ePix cameras support full frame readout faster than 120Hz and ROI modes which can be read at up to 1kHz rate. Next developments will target larger cameras and higher frame rates for the upcoming LCLS II.