학술논문

Integration of the Trigger and Data Acquisition Systems in ATLAS
Document Type
Periodical
Author
Riu, I.Abolins, M.Adragna, P.Avolio, G.Backlund, S.Badescu, E.Baines, J.Batreanu, S.Battaglia, A.Beck, H. P.Bee, C.Bell, P.Blair, R. R.Bogaerts, A.Bold, T.Bosman, M.Boyd, J.Burckhart-Chromek, D.Caprini, M.Cimino, D.Ciobotaru, M.Corso-Radu, A.Costa, M. J.Torres, R. C.Cranfield, R.Crone, G.Dawson, J.De Almeida Simoes, J.DellaPietra, M.Demers, S.Di Mattia, A.Dobson, M.Dos Anjos, A.Dotti, A.Drake, G.Ellis, N.Emeliyanov, D.Ermoline, Y.Eschrich, I.Ferland, J.Ferrari, R.Ferrer, M. L.Francis, D.Gadomski, S.Gameiro, S.Garitaonandia, H.Gaudio, G.Gorini, B.Gowdy, S.Green, B.Haberichter, W.Hadavand, H.Haeberli, C.Hauschild, M.Hauser, R.Hillier, S.Hinkelbein, C.Hughes-Jones, R.Idarraga, J.Joos, M.Kazarov, A.Kehoe, R.Kieft, G.Kirk, J.Kolos, S.Kordas, K.Korcyl, K.Kugel, A.Leahu, L.Leahu, M.Miotto, G. L.Lellouch, D.Mapelli, L.Martin, B.Masik, J.Mcpherson, R.Meessen, C.Meirosu, C.Mineev, M.Misiejuk, A.Mornacchi, G.Mueller, M.Garcia, R. M.Nagasaka, Y.Negri, A.Padilla, C.Parodi, F.Pasqualucci, E.Pauly, T.Petersen, J.Pope, B.Renkel, P.Roda, C.Salvatore, D.Scannicchio, D.Schiavi, C.Schlereth, J.Scholtes, I.Sivoklokov, S.Sloper, J. E.Soloviev, I.Spiwoks, R.Stancu, S.Stelzer, J.Strong, J.Sushkov, S.Tremblet, L.Unel, G.Vandelli, W.Vermeulen, J.Von Der Schmitt, J.Werner, P.Wheeler-Ellis, S.Wickens, F.Wiedenmann, W.Wilkens, H.Winklmeier, F.Wu, X.Yasu, Y.Zema, F.Zhang, J.Zobernig, H.
Source
IEEE Transactions on Nuclear Science IEEE Trans. Nucl. Sci. Nuclear Science, IEEE Transactions on. 55(1):106-112 Feb, 2008
Subject
Nuclear Engineering
Bioengineering
Data acquisition
Large Hadron Collider
Testing
Electromagnetic measurements
Kirk field collapse effect
Springs
Prototypes
Computational modeling
Discrete event simulation
ATLAS
DAQ
high energy physics
integration
trigger
Language
ISSN
0018-9499
1558-1578
Abstract
During 2006 and spring 2007, integration and commissioning of trigger and data acquisition (TDAQ) equipment in the ATLAS experimental area has progressed. Much of the work has focused on a final prototype setup consisting of around eighty computers representing a subset of the full TDAQ system. There have been a series of technical runs using this setup. Various tests have been run including those where around 6 k Level-1 preselected simulated proton–proton events have been processed in a loop mode through the trigger and dataflow chains. The system included the readout buffers containing the events, event building, second level and third level trigger processors. Aspects critical for the final system, such as event processing times, have been studied using different trigger algorithms as well as the different dataflow components.