학술논문

First-pass angiography in mice using FDG-PET: a simple method of deriving the cardiovascular transit time without the need of region-of-interest drawing
Document Type
Periodical
Source
IEEE Transactions on Nuclear Science IEEE Trans. Nucl. Sci. Nuclear Science, IEEE Transactions on. 52(5):1311-1315 Oct, 2005
Subject
Nuclear Engineering
Bioengineering
Angiography
Mice
Cardiology
Positron emission tomography
Robustness
Speech synthesis
Time measurement
Imaging phantoms
Lungs
Image generation
Cardiovascular transit time
first-pass angiography
mice
positron emission tomography
Language
ISSN
0018-9499
1558-1578
Abstract
In this study, we developed a simple and robust semi-automatic method to measure the right ventricle to left ventricle (RV-to-LV) transit time (TT) in mice using 2-[/sup 18/F]fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET). The accuracy of the method was first evaluated using a 4-D digital dynamic mouse phantom. The RV-to-LV TTs of twenty-nine mouse studies were measured using the new method and compared to those obtained from the conventional ROI-drawing method. The results showed that the new method correctly separated different structures (e.g., RV, lung, and LV) in the PET images and generated corresponding time activity curve (TAC) of each structure. The RV-to-LV TTs obtained from the new method and ROI method were not statistically different (p=0.20; r=0.76). We expect that this fast and robust method is applicable to the pathophysiology of cardiovascular diseases using small animal models such as rats and mice.