학술논문

Does Exerting Grasps Involve a Finite Set of Muscle Patterns? A Study of Intra- and Intersubject Variability of Forearm sEMG Signals in Seven Grasp Types
Document Type
Periodical
Source
IEEE Transactions on Neural Systems and Rehabilitation Engineering IEEE Trans. Neural Syst. Rehabil. Eng. Neural Systems and Rehabilitation Engineering, IEEE Transactions on. 32:1505-1514 2024
Subject
Bioengineering
Computing and Processing
Robotics and Control Systems
Signal Processing and Analysis
Communication, Networking and Broadcast Technologies
Muscles
Performance evaluation
Electrodes
Wrist
Task analysis
Recording
Electromyography
sEMG features
forearm muscles
grasps
muscle coordination
subject variability
Language
ISSN
1534-4320
1558-0210
Abstract
Surface Electromyography (sEMG) signals are widely used as input to control robotic devices, prosthetic limbs, exoskeletons, among other devices, and provide information about someone’s intention to perform a particular movement. However, the redundant action of 32 muscles in the forearm and hand means that the neuromotor system can select different combinations of muscular activities to perform the same grasp, and these combinations could differ among subjects, and even among the trials done by the same subject. In this work, 22 healthy subjects performed seven representative grasp types (the most commonly used). sEMG signals were recorded from seven representative forearm spots identified in a previous work. Intra- and intersubject variability are presented by using four sEMG characteristics: muscle activity, zero crossing, enhanced wavelength and enhanced mean absolute value. The results confirmed the presence of both intra- and intersubject variability, which evidences the existence of distinct, yet limited, muscle patterns while executing the same grasp. This work underscores the importance of utilizing diverse combinations of sEMG features or characteristics of various natures, such as time-domain or frequency-domain, and it is the first work to observe the effect of considering different muscular patterns during grasps execution. This approach is applicable for fine-tuning the control settings of current sEMG devices.