학술논문

Exploring Deep Learning and Machine Learning Approaches for Brain Hemorrhage Detection
Document Type
Periodical
Source
IEEE Access Access, IEEE. 12:45060-45093 2024
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Deep learning
Machine learning
Brain injuries
Hemorrhaging
Medical treatment
Computed tomography
Neurological diseases
Feature extraction
Diagnostic radiography
Benchmark testing
Classification algorithms
Image preprocessing
Detection algorithms
Artificial intelligence
brain hemorrhage
convolutional neural network
deep learning
intracranial hemorrhage
human health
machine learning
Language
ISSN
2169-3536
Abstract
Brain hemorrhage refers to a potentially fatal medical disorder that affects millions of individuals. The percentage of patients who survive can be significantly raised with the prompt identification of brain hemorrhages, due to image-guided radiography, which has emerged as the predominant treatment modality in clinical practice. A Computed Tomography Image has frequently been employed for the purpose of identifying and diagnosing neurological disorders. The manual identification of anomalies in the brain region from the Computed Tomography Image demands the radiologist to devote a greater amount of time and dedication. In the most recent studies, a variety of techniques rooted in Deep learning and traditional Machine Learning have been introduced with the purpose of promptly and reliably detecting and classifying brain hemorrhage. This overview provides a comprehensive analysis of the surveys that have been conducted by utilizing Machine Learning and Deep Learning. This research focuses on the main stages of brain hemorrhage, which involve preprocessing, feature extraction, and classification, as well as their findings and limitations. Moreover, this in-depth analysis provides a description of the existing benchmark datasets that are utilized for the analysis of the detection process. A detailed comparison of performances is analyzed. Moreover, this paper addresses some aspects of the above-mentioned technique and provides insights into prospective possibilities for future research.