학술논문

Dynamic Modeling of a MEMS Electro-Thermal Actuator Considering Micro-Scale Heat Transfer With End Effectors
Document Type
Periodical
Source
Journal of Microelectromechanical Systems J. Microelectromech. Syst. Microelectromechanical Systems, Journal of. 33(2):217-226 Apr, 2024
Subject
Engineered Materials, Dielectrics and Plasmas
Components, Circuits, Devices and Systems
End effectors
Mathematical models
Behavioral sciences
Actuators
Predictive models
Conductivity
Finite element analysis
Dynamic model
electro-thermal actuator (ETA)
micro-scale heat transfer
two-way coupling
Language
ISSN
1057-7157
1941-0158
Abstract
Dynamic modeling is the basis for predicting the behavior of the electro-thermal actuator (ETA). Although the sequential decoupling method, often used in previous studies, has been able to model the dynamics of ETAs, most of them focused only on the ETAs themselves, and few considered the effects of end effectors. In this work, a dynamic multi-fields coupling model considering the effects of end effectors was developed. Due to the end effector, the dynamic model changes from a one-way coupled problem to a complex two-way coupled problem, limiting the commonly used sequential decoupling method. In order to solve the two-way coupled problem, a thermal microscope system was first employed to study the heat transfer characteristics between the ETA and the end effector at different thicknesses of the air gap. Subsequently, a combination of the Crank-Nicolson finite difference method and finite element method was employed to solve the problem numerically. It was eventually demonstrated by experiments that the presented dynamic model is an effective analytical technique to predict the dynamic behavior of the ETA with end effectors.