학술논문

Physics-Enhanced TinyML for Real- Time Detection of Ground Magnetic Anomalies
Document Type
Periodical
Source
IEEE Access Access, IEEE. 12:25372-25384 2024
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Magnetosphere
Magnetometers
Predictive models
Computational modeling
Earth
Data models
Real-time systems
Machine learning
Embedded systems
Meteorology
Embedded machine learning
geomagnetically induced current (GIC)
machine learning
magnetometer
physics-guided machine learning
space weather
TinyML
Language
ISSN
2169-3536
Abstract
Space weather phenomena like geomagnetic disturbances (GMDs) and geomagnetically induced currents (GICs) pose significant risks to critical technological infrastructure. While traditional predictive models, grounded in simulation, hold theoretical robustness, they grapple with challenges, notably the assimilation of imprecise data and extensive computational complexities. In recent years, Tiny Machine Learning (TinyML) has been adopted to develop Machine Learning (ML)-enabled magnetometer systems for predicting real-time terrestrial magnetic perturbations as a proxy measure for GIC. While TinyML offers efficient, real-time data processing, its intrinsic limitations prevent the utilization of robust methods with high computational needs. This paper developed a physics-guided TinyML framework to address the above challenges. This framework integrates physics-based regularization at the stages of model training and compression, thereby augmenting the reliability of predictions. The developed pruning scheme within the framework harnesses the inherent physical characteristics of the domain, striking a balance between model size and robustness. The study presents empirical results, drawing a comprehensive comparison between the accuracy and reliability of the developed framework and its traditional counterpart. Such a comparative analysis underscores the prospective applicability of the developed framework in conceptualizing robust, ML-enabled magnetometer systems for real-time space weather forecasting.