학술논문

Sliding Dual-Window-Inspired Reconstruction Network for Hyperspectral Anomaly Detection
Document Type
Periodical
Source
IEEE Transactions on Geoscience and Remote Sensing IEEE Trans. Geosci. Remote Sensing Geoscience and Remote Sensing, IEEE Transactions on. 62:1-15 2024
Subject
Geoscience
Signal Processing and Analysis
Image reconstruction
Windows
Task analysis
Dictionaries
Detectors
Training
Predictive models
Blind-spot network
convolutional neural networks (CNNs)
deep learning (DL)
hyperspectral images (HSIs)
image reconstruction
self-supervised learning
Language
ISSN
0196-2892
1558-0644
Abstract
Hyperspectral anomaly detection (HAD) aims to identify anomalous objects that deviate from surrounding backgrounds in an unlabeled hyperspectral image (HSI). Most available neural networks that make use of the reconstruction error to perform HAD tend to fit both backgrounds and anomalies, resulting in small reconstruction errors for both and not being effective in separating targets from background. To address this issue, we develop Dual-window-inspired reconstruction Network (DirectNet), a new background reconstruction network for HAD that seamlessly integrates a sliding dual-window model into a blind-block architecture. Concretely, DirectNet establishes an inner window within the network’s receptive field by erasing the center block information so that the content of the inner window remains invisible during the reconstruction of the central pixel. In addition, the depth of our reconstruction network is adaptive to the size of the input image patch, ensuring that the network’s receptive field aligns with the dimensions of the input patch. The receptive field outside the inner window is considered an outer window. This weakens the impact of anomalies on the reconstruction process, causing the reconstructed pixels to converge toward the background distribution in the outer window region. Consequently, the reconstructed HSI can be regarded as a pure background HSI, leading to further amplification of reconstruction errors for anomalous targets. This enhancement improves the discriminatory ability of DirectNet. Specifically, DirectNet solely utilizes the outer window information to predict/reconstruct the central pixel. As a result, when reconstructing pixels inside anomalous targets of different sizes, the targets primarily fall within the inner window. Comprehensive experiments (conducted on four datasets) demonstrate that DirectNet achieves competitive performance compared to other state-of-the-art detectors.