학술논문

Blind and Spatially-Regularized Online Joint Optimization of Source Separation, Dereverberation, and Noise Reduction
Document Type
Periodical
Source
IEEE/ACM Transactions on Audio, Speech, and Language Processing IEEE/ACM Trans. Audio Speech Lang. Process. Audio, Speech, and Language Processing, IEEE/ACM Transactions on. 32:1157-1172 2024
Subject
Signal Processing and Analysis
Computing and Processing
Communication, Networking and Broadcast Technologies
General Topics for Engineers
Optimization
Delays
Transfer functions
Speech processing
Noise reduction
Reverberation
Real-time systems
Online processing
dereverberation
blind source separation
microphone array
spatial regularization
Language
ISSN
2329-9290
2329-9304
Abstract
This paper proposes a computationally efficient joint optimization algorithm that performs online source separation, dereverberation, and noise reduction based on blind and spatially-regularized processing. When applying such online Blind Source Separation (BSS) as online Independent Vector Extraction (IVE) to a speech application, we must focus on the trade-off between the algorithmic delay and separation accuracy, both of which depend on the analysis frame length. In addition, to separate the sources with specified source permutation, researchers introduced spatial regularization based on the Directions-of-Arrival (DOAs) of the sources into IVE. However, the scale ambiguity of IVE often makes the spatial regularization work inappropriately. To solve these problems, we first propose a blind online joint optimization algorithm of IVE and weighted prediction error dereverberation (WPE). This online algorithm can achieve accurate separation even using short analysis frames because reverberation can be reduced using WPE. We then extend the online joint optimization with robust spatial regularization. We reveal that regularizing the scale of the separated signals is very effective in making the DOA-based spatial regularization work reliably. Our experiments confirm that our blind online joint optimization algorithm can significantly improve the separation accuracy with an algorithmic delay of 8 ms. In addition, we confirm that the proposed spatially-regularized online joint optimization algorithm reduces the rate of the source permutation error to zero percent.