학술논문

Enhancing Zero-Shot Crypto Sentiment With Fine-Tuned Language Model and Prompt Engineering
Document Type
Periodical
Source
IEEE Access Access, IEEE. 12:10146-10159 2024
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Cryptocurrency
Social networking (online)
Analytical models
Training
Context modeling
Sentiment analysis
Transformers
Zero-shot learning
Supervised learning
in-context learning
supervised fine-tuning
instruction tuned
prompt engineering
Language
ISSN
2169-3536
Abstract
Blockchain technology has revolutionized the financial landscape, witnessing widespread adoption of cryptocurrencies due to their decentralized and transparent nature. As sentiments expressed on social media platforms wield substantial influence over cryptocurrency market dynamics, sentiment analysis has emerged as a crucial tool for gauging public opinion and predicting market trends. This paper explores fine-tuning techniques for large language models to enhance sentiment analysis performance. Experimental results demonstrate a significant average zero-shot performance gain of 40% on unseen tasks after fine-tuning, highlighting its potential. Additionally, the impact of instruction-based fine-tuning on models of varying scales is examined, revealing that larger models benefit from instruction tuning, achieving the highest average accuracy score of 75.16%. In contrast, smaller-scale models may experience reduced generalization due to complete model capacity utilization. To gain deeper insight into instruction effectiveness, the paper presents experimental investigations under different instruction tuning setups. Results show the model achieves an average accuracy score of 72.38% for short and simple instructions, outperforming long and complex instructions by over 12%. Finally, the paper explores the relationship between fine-tuning corpus size and model performance, identifying an optimal corpus size of 6,000 data points for the highest performance across different models. Microsoft’s MiniLM, a distilled version of BERT, excels in efficient data use and performance optimization, while Google’s FLAN-T5 demonstrates consistent and reliable performance across diverse datasets.