학술논문

Accretionary Learning With Deep Neural Networks With Applications
Document Type
Periodical
Source
IEEE Transactions on Cognitive Communications and Networking IEEE Trans. Cogn. Commun. Netw. Cognitive Communications and Networking, IEEE Transactions on. 10(2):660-673 Apr, 2024
Subject
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Artificial neural networks
Data models
Knowledge engineering
Task analysis
Training
Speech recognition
Learning systems
Deep learning
accretion learning
deep neural networks
pattern recognition
wireless communications
Language
ISSN
2332-7731
2372-2045
Abstract
One of the fundamental limitations of Deep Neural Networks (DNN) is their inability to acquire and accumulate new cognitive capabilities in an incremental or progressive manner. When data appear from object classes not among the learned ones, a conventional DNN would not be able to recognize them due to the fundamental formulation that it assumes. A typical solution is to re-design and re-learn a new network, most likely an expanded one, for the expanded set of object classes. This process is quite different from that of a human learner. In this paper, we propose a new learning method named Accretionary Learning (AL) to emulate human learning, in that the set of object classes to be recognized need not be fixed, meaning it can grow as the situation arises without requiring an entire redesign of the system. The proposed learning structure is modularized, and can dynamically expand to learn and register new knowledge, as the set of objects grows in size. AL does not forget previous knowledge when learning new data classes. We show that the structure and its learning methodology lead to a system that can grow to cope with increased cognitive complexity while providing stable and superior overall performance.