학술논문

Phase Identification in Power Distribution Systems via Feature Engineering
Document Type
Periodical
Source
IEEE Access Access, IEEE. 11:118615-118624 2023
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Voltage measurement
Maximum likelihood detection
Correlation
Nonlinear filters
Market research
Finite impulse response filters
Time series analysis
Phase identification
smart grid
power distribution
feature engineering
digital signal processing
unsupervised learning
Language
ISSN
2169-3536
Abstract
Phase identification is the problem of determining the phase connection of loads in a power distribution system. In modern times, utility operators will generally accomplish this using smart meter data that requires some form of feature engineering to achieve practical phase identification using data-driven methods. Feature engineering is essential for voltage magnitude data containing noise, seasonality, and trend. We present crucial components of a feature engineering pipeline to perform linear denoising with Singular Value Decomposition, filtering of the denoised data to remove the seasonality and trend, and fuse multiple meter channels. We use the results of the feature engineering to perform phase label correction, a subproblem of phase identification. To evaluate techniques, the authors generate a synthetic dataset from the meshed IEEE 342-Node test feeder circuit with the 2021 Electric Reliability Council of Texas load profiles. Our results show that denoising is quite effective for improving phase identification accuracy in the presence of measurement noise. We present new insight into filtering voltage measurement data to improve accuracy and eliminate the need to determine salient frequencies. We also present the application of a data channel fusion technique that is novel to the phase identification literature. This technique enhances phase identification in cases where both wye and delta-connected loads are present.