학술논문

Graph-Based Active Learning for Nearly Blind Hyperspectral Unmixing
Document Type
Periodical
Source
IEEE Transactions on Geoscience and Remote Sensing IEEE Trans. Geosci. Remote Sensing Geoscience and Remote Sensing, IEEE Transactions on. 61:1-16 2023
Subject
Geoscience
Signal Processing and Analysis
Hyperspectral imaging
TV
Training
Optimization
Matrix decomposition
Geology
Estimation
Active learning
graph learning
hyperspectral unmixing (HSU)
semisupervised learning
Language
ISSN
0196-2892
1558-0644
Abstract
Hyperspectral unmixing (HSU) is an effective tool to ascertain the material composition of each pixel in a hyperspectral image with typically hundreds of spectral channels. In this article, we propose two graph-based semisupervised unmixing methods. The first one directly applies graph learning to the unmixing problem, while the second one solves an optimization problem that combines the linear unmixing model and a graph-based regularization term. Following a semisupervised framework, our methods require a very small number of training pixels that can be selected by a graph-based active learning method. We assume to obtain the ground-truth information at these selected pixels, which can be either the exact (EXT) abundance value or the one-hot (OH) pseudo-label. In practice, the latter is much easier to obtain, which can be achieved by minimally involving a human in the loop. Compared with other popular blind unmixing methods, our methods significantly improve performance with minimal supervision. Specifically, the experiments demonstrate that the proposed methods improve the state-of-the-art blind unmixing approaches by 50% or more using only 0.4% of training pixels.