학술논문

LMR: Lane Distance-Based Metric for Trajectory Prediction
Document Type
Conference
Source
2023 IEEE Intelligent Vehicles Symposium (IV) Intelligent Vehicles Symposium (IV), 2023 IEEE. :1-6 Jun, 2023
Subject
Communication, Networking and Broadcast Technologies
Computing and Processing
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Measurement
Intelligent vehicles
Source coding
Roads
Euclidean distance
Predictive models
Trajectory
Behavior-Based Systems
Motion and Path Planning
AI-Based Methods
Language
ISSN
2642-7214
Abstract
The development of approaches for trajectory prediction requires metrics to validate and compare their performance. Currently established metrics are based on Euclidean distance, which means that errors are weighted equally in all directions. Euclidean metrics are insufficient for structured environments like roads, since they do not properly capture the agent’s intent relative to the underlying lane. In order to provide a reasonable assessment of trajectory prediction approaches with regard to the downstream planning task, we propose a new metric that is lane distance-based: Lane Miss Rate (LMR). For the calculation of LMR, the ground-truth and predicted endpoints are assigned to lane segments, more precisely their centerlines. Measured by the distance along the lane segments, predictions that are within a certain threshold distance to the ground-truth count as hits, otherwise they count as misses. LMR is then defined as the ratio of sequences that yield a miss. Our results on three state-of-the-art trajectory prediction models show that LMR preserves the order of Euclidean distance-based metrics. In contrast to the Euclidean Miss Rate, qualitative results show that LMR yields misses for sequences where predictions are located on wrong lanes. Hits on the other hand result for sequences where predictions are located on the correct lane. This means that LMR implicitly weights Euclidean error relative to the lane and goes into the direction of capturing intents of traffic agents. The source code of LMR for Argoverse 2 is publicly available 1 .