학술논문

Fast Assessment of Rotor Barrier Dimensional Allowances in Synchronous Reluctance Machines
Document Type
Periodical
Source
IEEE Access Access, IEEE. 11:58349-58358 2023
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Rotors
Torque measurement
Tolerance analysis
Torque
Reluctance machines
Performance evaluation
Iron
Performance evlauation
Dimensional allowances
synchronous reluctance machine
torque ripple
average torque
fast performance evaluation method
full-range analysis
Language
ISSN
2169-3536
Abstract
Tolerance analysis on synchronous reluctance machines (SynRM) is mandatory if accurate refinements of the rotor structure are adopted, a must for low-ripple applications However, the impact of manufacturing/dimensional tolerances or material degradation has been scarcely included in the design steps for SynRMs obeying complexity and time-requirement reasons. The paper provides an analysis of rotor barrier dimensional allowances in synchronous reluctance machines by utilizing a semi-analytical approach. This method is not only fast yet it also generates a substantial number of results that allows to evaluate the influence of dimensional deviations on the machine’s performance. The proposed performance evaluation method is validated in four machines by direct finite element (FE) simulations, showing good agreement and low computational burden. Once validated, the method is applied to perform a brute-force search in a single-barrier 4-pole machine with different combinations of dimensional allowances, obtaining a significant reduction in computational time compared to traditional direct FE evaluation. The paper concludes with a description of the proposed methodology and its applicability to other SynRM designs. This opens the possibility of quickly analyzing tolerances in SynRMs and improving their performance by evaluating different dimensions and position of flux barriers.