학술논문

A Physics-Driven Artificial Agent for Online Time-Optimal Vehicle Motion Planning and Control
Document Type
Periodical
Source
IEEE Access Access, IEEE. 11:46344-46372 2023
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Motion planning
Biological system modeling
Vehicle dynamics
Tracking
Load modeling
Artificial neural networks
Computational modeling
Neural networks
Autonomous racing
model learning
model predictive control (MPC)
motion planning
neural networks
trajectory optimization
Language
ISSN
2169-3536
Abstract
This paper presents a hierarchical framework with novel analytical and neural physics-driven models, to enable the online planning and tracking of minimum-time maneuvers, for a vehicle with partially-unknown parameters. We introduce a lateral speed prediction model for high-level motion planning with economic nonlinear model predictive control (E-NMPC). A low-level steering controller is developed with a novel feedforward-feedback physics-driven artificial neural network (NN). A longitudinal dynamic model is identified to tune a low-level speed-tracking controller. The high- and low-level control models are identified with an automatic three-step scheme, combining open-loop and closed-loop maneuvers to model the maximum acceleration G-G-v performance constraint for E-NMPC, and to capture the effect of the longitudinal acceleration on the lateral dynamics. The proposed framework is used in a simulation environment, for the online closed-loop control of a highly detailed sedan vehicle simulator, whose parameters are partially-unknown. Two different circuits are adopted to validate the approach, and a robustness analysis is performed by varying the vehicle mass and the load distribution. A minimum-time optimal control problem is solved offline and used for a comparison with the closed-loop results. A video demonstrating both the automatic three-step identification scheme and the motion planning and control results is available at the following link: https://www.youtube.com/watch?v=xQ_T96IjGP8.