학술논문

Wintertime Polynya Structure and Variability From Thermal Remote Sensing and Seal-Borne Observations at Pine Island Glacier, West Antarctica
Document Type
Periodical
Source
IEEE Transactions on Geoscience and Remote Sensing IEEE Trans. Geosci. Remote Sensing Geoscience and Remote Sensing, IEEE Transactions on. 61:1-13 2023
Subject
Geoscience
Signal Processing and Analysis
Ocean temperature
Sea surface
Temperature measurement
Oceans
Remote sensing
MODIS
Ice
Ice-ocean interaction
Landsat 8 Thermal Infrared Sensor (TIRS)
Moderate Resolution Imaging Spectroradiometer (MODIS)
persistent polynyas
thermal remote sensing
Language
ISSN
0196-2892
1558-0644
Abstract
Antarctica’s ice shelves play a critical role in modulating ice loss to the ocean by buttressing grounded ice upstream. With the potential to impact ice-shelf stability, persistent polynyas (open-water areas surrounded by sea ice that occur across multiple years at the same location) at the edge of many ice-shelf fronts are maintained by winds and/or ocean heat and are locations of strong ice–ocean–atmosphere interactions. However, in situ observations of polynyas are sparse due to the logistical constraints of collecting Antarctic field measurements. Here, we used wintertime (May–August) temperature and salinity observations derived from seal-borne instruments deployed in 2014, 2019, and 2020, in conjunction with thermal imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Landsat 8 Thermal Infrared Sensor (TIRS) to investigate spatial, temporal, and thermal structural variability of polynyas near Pine Island Glacier (PIG). Across the three winters considered, there were 176 anomalously warm ( $3\sigma $ from background) seal dives near the PIG ice front, including 26 dives that coincided with MODIS images with minimal cloud cover that also showed a warm surface temperature anomaly. These warm surface temperatures correlated with ocean temperatures down to 150 m depth or deeper, depending on the year, suggesting that MODIS-derived surface thermal anomalies can be used for monitoring polynya presence and structure during polar night. The finer spatial resolution (100 m) of TIRS wintertime thermal imagery captures more detailed thermal structural variability within these polynyas, which may provide year-round insight into subice-shelf processes if this dataset is collected operationally.