학술논문

AritPIM: High-Throughput In-Memory Arithmetic
Document Type
Periodical
Source
IEEE Transactions on Emerging Topics in Computing IEEE Trans. Emerg. Topics Comput. Emerging Topics in Computing, IEEE Transactions on. 11(3):720-735 Sep, 2023
Subject
Computing and Processing
Logic gates
Arithmetic
Memristors
Resistance
Parallel processing
Adders
Logic arrays
Digital processing-in-memory (PIM)
parallel computation
arithmetic
fixed-point arithmetic
floating-point arithmetic
Language
ISSN
2168-6750
2376-4562
Abstract
Digital processing-in-memory (PIM) architectures are rapidly emerging to overcome the memory-wall bottleneck by integrating logic within memory elements. Such architectures provide vast computational power within the memory itself in the form of parallel bitwise logic operations. We develop novel algorithmic techniques for PIM that, combined with new perspectives on computer arithmetic, extend this bitwise parallelism to the four fundamental arithmetic operations (addition, subtraction, multiplication, and division), for both fixed-point and floating-point numbers, and using both bit-serial and bit-parallel approaches. We propose a state-of-the-art suite of arithmetic algorithms, demonstrating the first algorithm in the literature of digital PIM for a majority of cases – including cases previously considered impossible for digital PIM, such as floating-point addition. Through a case study on memristive PIM, we compare the proposed algorithms to an NVIDIA RTX 3070 GPU and demonstrate significant throughput and energy improvements.