학술논문

Automated Detection and Depth Determination of Melt Ponds on Sea Ice in ICESat-2 ATLAS Data—The Density-Dimension Algorithm for Bifurcating Sea-Ice Reflectors (DDA-Bifurcate-Seaice)
Document Type
Periodical
Source
IEEE Transactions on Geoscience and Remote Sensing IEEE Trans. Geosci. Remote Sensing Geoscience and Remote Sensing, IEEE Transactions on. 61:1-22 2023
Subject
Geoscience
Signal Processing and Analysis
Sea ice
Sea surface
Photonics
Arctic
Laser beams
Surface topography
Ice
Arctic sea ice
computational algorithm
cryospheric sciences
Cloud and land Elevation Satellite (ICESat-2)
melt pond
satellite altimetry
Language
ISSN
0196-2892
1558-0644
Abstract
As climate warms and the transition from a perennial to a seasonal Arctic sea-ice cover is imminent, understanding melt ponding is central to understanding changes in the new Arctic. National Aeronautics and Space Administration (NASA)’s Ice, Cloud and land Elevation Satellite (ICESat-2) has the capacity to provide measurements and monitoring of the onset of melt in the Arctic and on melt progression. Yet ponds are currently not identified on the ICESat-2 standard sea-ice products, in which only a single surface is determined. The objective of this article is to introduce a mathematical algorithm that facilitates automated detection of melt ponds in the ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS) data, retrieval of two surface heights, pond surface and bottom, and measurements of depth and width of melt ponds. With ATLAS, ICESat-2 carries the first spaceborne multibeam micropulse photon-counting laser altimeter system, operating at 532-nm frequency. ATLAS data are recorded as clouds of discrete photon points. The Density-Dimension Algorithm for bifurcating sea-ice reflectors (DDA-bifurcate-seaice) is an autoadaptive algorithm that solves the problem of pond detection near the 0.7-m nominal along-track spacing of ATLAS data, utilizing the radial basis function for calculation of a density field and a threshold function that automatically adapts to changes in the background, apparent surface reflectance, and some instrument effects. The DDA-bifurcate-seaice is applied to large ICESat-2 datasets from the 2019 and 2020 melt seasons in the multiyear Arctic sea-ice region. Results are evaluated by comparison with those from a manually forced algorithm.