학술논문

Reduction in Eddy Current Loss of Special Rectangular Windings in High-Torque IPMSM Used for Wind Generator
Document Type
Periodical
Source
IEEE Access Access, IEEE. 11:4740-4751 2023
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Windings
Eddy currents
Stator cores
Magnetic flux
Stator windings
Rotors
Generators
Wind power generation
IPMSM
IPMSG
high-torque
concentrated windings
rectangular windings
eddy current loss
wind generator
Language
ISSN
2169-3536
Abstract
A special rectangular winding structure, which has different cross-sectional shape but the same cross-sectional area for each turn, has been adopted in a high-torque IPMSM used for a wind generator to improve slot factor and heat dissipation. However, large eddy current loss occurs to the rectangular windings. According to this problem, this paper proposes three improvements to reduce the eddy current loss. Among them, removing a portion of windings and replacing a portion of windings with aluminum are discussed to realize a tradeoff between eddy current and copper losses. And adjusting the tooth-tip shape is discussed to suppress the magnetic flux passing through the windings by mitigating magnetic saturation around the tooth-tip. Additionally, manufacturing costs can also be reduced by adopting a portion of aluminum windings. Moreover, a 3-step-skewed rotor structure is discussed to reduce cogging torque and lower the start-up wind speed. And its influence on losses is also discussed. Furthermore, three models adopting round windings are made and discussed for comparison. The FEM (Finite Element Method) results show that compared with the three round windings models, the proposed model still has a better performance in the reduction of windings eddy current loss. Finally, a prototype machine is manufactured to verify the FEM results, and the experimental results show that the maximum efficiency of the prototype can exceed 97.5%.