학술논문

Filter Influence on Rotor Losses in Coreless Axial Flux Permanent Magnet Machines
Document Type
article
Source
Advances in Electrical and Computer Engineering, Vol 13, Iss 1, Pp 81-86 (2013)
Subject
Eddy currents
harmonic filters
permanent magnet machines
power filters
permanent magnets synchronous machine
slotless machines
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Computer engineering. Computer hardware
TK7885-7895
Language
English
ISSN
1582-7445
1844-7600
Abstract
This paper investigates the eddy current losses induced in the rotor of coreless Axial-Flux machines. The calculation of eddy currents in the magnets requires the simulation of the inverter and the filter to obtain the harmonic content of the stator currents and FEM analysis of the magnets in the rotor. Due to the low inductance in coreless machines, the induced eddy current losses in the rotor remain lower than in traditional slotted machines. If only machine losses are considered, filters in DC/AC converters are not required in machines with wide airgaps as time harmonic losses in the rotor are very low.The harmonic content both from simulations and experimental results of a DC/AC converter are used to calculate the eddy currents in the rotor magnets. The properties of coreless machine topologies are investigated and some simplifications are proposed for time efficient 3D-FEM analysis. The time varying magnetic field can be considered constant over the magnets when the pole is divided in several magnets.The simplified FEM method to calculate eddy current losses is applicable to coreless machines with poles split into several magnets, although the conclusions are applicable to all coreless and slotless motors and generators.