학술논문
Privacy Attacks on Image AutoRegressive Models
Document Type
Working Paper
Source
Subject
Language
Abstract
Image autoregressive generation has emerged as a powerful new paradigm, with image autoregressive models (IARs) matching state-of-the-art diffusion models (DMs) in image quality (FID: 1.48 vs. 1.58) while allowing for higher generation speed. However, the privacy risks associated with IARs remain unexplored, raising concerns about their responsible deployment. To address this gap, we conduct a comprehensive privacy analysis of IARs, comparing their privacy risks to those of DMs as a reference point. Specifically, we develop a novel membership inference attack (MIA) that achieves a remarkably high success rate in detecting training images, with a True Positive Rate at False Positive Rate = 1% (TPR@FPR=1%) of 86.38%, compared to just 6.38% for DMs using comparable attacks. We leverage our novel MIA to perform dataset inference (DI) for IARs and show that it requires as few as 6 samples to detect dataset membership, compared to 200 samples for DI in DMs. This confirms a higher level of information leakage in IARs. Finally, we are able to extract hundreds of training data points from an IAR (e.g., 698 from VAR-d30). Our results suggest a fundamental privacy-utility trade-off: while IARs excel in image generation quality and speed, they are empirically significantly more vulnerable to privacy attacks compared to DMs that achieve similar performance. This trend suggests that incorporating techniques from DMs into IARs, such as modeling the per-token probability distribution using a diffusion procedure, could help mitigate IARs' vulnerability to privacy attacks. We make our code available at: https://github.com/sprintml/privacy_attacks_against_iars
Comment: Code: https://github.com/sprintml/privacy_attacks_against_iars
Comment: Code: https://github.com/sprintml/privacy_attacks_against_iars