학술논문
Collective motion from quantum-inspired dynamics in visual perception
Document Type
Working Paper
Source
Subject
Language
Abstract
We propose a model of collective behavior in self-propelled active agents that incorporates a perceptual decision-making process. In this framework, the decision-making dynamics is modeled using quantum formalism. The perceptual decision state of each agent is an entangled or superposed state of the decision states for the neighboring agents within the vision cone. We suggest that in this framework, the force driving the movement of active agents is governed by the quantum average of its perception operator, providing a bridge between perceptual decision-making processes and classical dynamics. Additionally, we introduce two perceptual measures of cohesion in the flock, namely, perception strength and perceptual energy, to characterize collective behavior in terms of decision-making dynamics. Our model demonstrates that, with an appropriate choice of perceptual decision state, the well-known Vicsek model of flocking behavior can be derived as a specific case of this quantum-inspired approach. This approach provides fresh insights into collective behavior and multi-agent coordination, revealing how classical patterns of collective behavior emerge naturally from perception.
Comment: 22 pages, 8 figures, 1 table
Comment: 22 pages, 8 figures, 1 table