학술논문
The \pi^+\pi^- Coulomb interaction study and its use in the data processing
Document Type
Working Paper
Author
Adeva, B.; Afanasyev, L.; Anania, A.; Aogaki, S.; Benelli, A.; Brekhovskikh, V.; Cechak, T.; Chiba, M.; Chliapnikov, P.; Drijard, D.; Dudarev, A.; Dumitriu, D.; Federicova, P.; Gorin, A.; Gritsay, K.; Guaraldo, C.; Gugiu, M.; Hansroul, M.; Hons, Z.; Horikawa, S.; Iwashita, Y.; Kluson, J.; Kobayashi, M.; Kruglova, L.; Kulikov, A.; Kulish, E.; Lamberto, A.; Lanaro, A.; Lednicky, R.; Marinas, C.; Martincik, J.; Nemenov, L.; Nikitin, M.; Okada, K.; Olchevskii, V.; Pentia, M.; Penzo, A.; Plo, M.; Prusa, P.; Rappazzo, G.; Vidal, A. Romero; Ryazantsev, A.; Rykalin, V.; Saborido, J.; Schacher, J.; Sidorov, A.; Smolik, J.; Takeutchi, F.; Trojek, T.; Trusov, S.; Urban, T.; Vrba, T.; Yazkov, V.; Yoshimura, Y.; Zrelov, P.
Source
Subject
Language
Abstract
In this work the Coulomb effects (Coulomb correlations) in $\pi^+\pi^-$ pairs produced in p + Ni collisions at 24 GeV/$c$, are studied using experimental $\pi^+\pi^-$ pair distributions in $Q$, the relative momentum in the pair center of mass system (c.m.s), and its projections $Q_L$ (longitudinal component) and $Q_t$ (transverse component) relative to the pair direction in the laboratory system (l.s.). The $Q$, $Q_L$, and $Q_t$ distributions of the {\sl Coulomb pairs} in the c.m.s. have been simulated assuming they are described by the phase space modified by the known point-like Coulomb correlation function $A_C(Q)$, corrected for small effects due to the nonpoint-like pair production and the strong two-pion interaction. The same distributions of {\sl non-Coulomb pairs} have been simulated according to the phase space, but without $A_C(Q)$. It is shown that the number of {\sl Coulomb pairs} in all $Q_t$ intervals, including the small $Q_t$ (small opening angles $\theta$ in the l.s.) is calculated with the theoretical precision better than 2\%. The comparison of the simulated and experimental numbers of {\sl Coulomb pairs} at small $Q_t$ allows us to check and correct the detection efficiency for the pairs with small $\theta$ (0.06 mrad and smaller). It is shown that {\sl Coulomb pairs} can be used as a new physical tool to check and correct the quality of the simulated events. The special property of the {\sl Coulomb pairs} is the possibility of checking and correcting the detection efficiency, especially for the pairs with small opening angles.