학술논문

A Segmented Total Energy Detector (sTED) optimized for $(n,\gamma)$ cross-section measurements at n_TOF EAR2
Document Type
Working Paper
Source
Subject
Physics - Instrumentation and Detectors
Nuclear Experiment
Language
Abstract
The neutron time-of-flight facility n_TOF at CERN is a spallation source dedicated to measurements of neutron-induced reaction cross-sections of interest in nuclear technologies, astrophysics, and other applications. Since 2014, Experimental ARea 2 (EAR2) is operational and delivers a neutron fluence of $4\times 10^7$ neutrons per nominal proton pulse, which is 50 times higher than the one of Experimental ARea 1 (EAR1) of $8\times10^5$ neutrons per pulse. The high neutron flux at EAR2 results in high counting rates in the detectors that challenged the previously existing capture detection systems. For this reason, a Segmented Total Energy Detector (sTED) has been developed to overcome the limitations in the detectors response, by reducing the active volume per module and by using a photomultiplier (PMT) optimized for high counting rates. This paper presents the main characteristics of the sTED, including energy and time resolution, response to $\gamma$-rays, and provides as well details of the use of the Pulse Height Weighting Technique (PHWT) with this detector. The sTED has been validated to perform neutron-capture cross-section measurements in EAR2 in the neutron energy range from thermal up to at least 400 keV. The detector has already been successfully used in several measurements at n_TOF EAR2.