학술논문

Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL
Document Type
Working Paper
Source
Subject
Nuclear Experiment
Nuclear Theory
Language
Abstract
The masses of $^{84}$Br, $^{105}$Mo, $^{115,119,121}$Pd, $^{122}$Ag, $^{127,129}$In, $^{132}$Sb and their respective isomeric states have been measured with the JYFLTRAP Penning trap mass spectrometer using the phase-imaging ion-cyclotron-resonance technique. The excitation energies of the isomeric states in $^{132}$Sb and $^{119}$Pd were experimentally determined for the first time, while for $^{84}$Br, $^{115}$Pd and $^{127,129}$In, the precision of the mass values was substantially improved. In $^{105}$Mo and $^{121}$Pd there were no signs of a long-lived isomeric state. The ground-state measurements of $^{119}$Pd and $^{122}$Ag indicated that both are significantly more bound than the literature values. For $^{122}$Ag, there was no indication of a proposed third long-lived state. The results for the $N=49$ nucleus $^{84}$Br and isomers close to doubly magic $^{132}$Sn have been compared to the shell-model, proton-neutron quasi-particle random-phase approximation (pnQRPA) and the microscopic quasiparticle-phonon model (MQPM) calculations.
Comment: 14 pages, 10 figures