학술논문

Vibrational properties differ between halide and chalcogenide perovskite semiconductors, and it matters for optoelectronic performance
Document Type
Working Paper
Source
Subject
Condensed Matter - Materials Science
Language
Abstract
We report a comparative study of temperature-dependent photoluminescence and structural dynamics of two perovskite semiconductors, the chalcogenide BaZrS$_3$ (BZS) and the halide CsPbBr$_3$ (CPB). These materials have similar crystal structures and direct band gaps, but we find that they have quite distinct optoelectronic and vibrational properties. Both materials exhibit thermally-activated non-radiative recombination, but the non-radiative recombination rate in BZS is between two and four orders of magnitude faster than in CPB. Raman spectroscopy reveals that the effects of phonon anharmonicity are far more pronounced in CPB than in BZS. Further, although both materials feature a large dielectric response due to low-energy polar optical phonons, the phonons in CPB are substantially lower in energy than in BZS. Our results suggest that electron-phonon coupling in BZS is more effective at non-radiative recombination than in CPB, and that BZS may also have a substantially higher concentration of non-radiative recombination centers than CPB. The low defect concentration in CPB may be related to the ease of lattice reconfiguration, typified by anharmonic bonding. It remains to be seen to what extent these differences are inherent to the chalcogenide and halide perovskites and to what extent they can be affected by materials processing; comparing BZS single-crystals and thin films provides reason for optimism.
Comment: Main text - 12 pages with 5 figures and 1 table. Supplemental text - 16 pages with 6 figures and 5 tables