학술논문

Standing spin waves in Permalloy-NiO bilayers as a probe of the interfacial exchange coupling
Document Type
Working Paper
Source
Subject
Condensed Matter - Mesoscale and Nanoscale Physics
Condensed Matter - Other Condensed Matter
Language
Abstract
Ferromagnetic/Antiferromagnetic (FM/AFM) bilayers dynamics have been a recent topic of interest due to the interaction occurring at the interface, where the magnetic moments of the AFM can be imprinted into the FM, and the exchange bias field can affect these dynamics. Here, we investigate Permalloy (Py) and NiO (Py/NiO) hybrids and for comparison single Py films in the broad Py thickness range varied from few nm to 200 nm by using static (Kerr effect) and dynamic (spin waves) measurements along with micromagnetic simulations. We observe hybrid modes between uniform (ferromagnetic resonance FMR, n=0) and perpendicular standing spin waves (PSSWs, n=1, 2) and a clear enhancement of the PSSWs modes frequencies upon interfacing Py with NiO both from experiments and simulations. This enhancement becomes less pronounced as the thickness of the film increases, demonstrating its interfacial origin rooted in the exchange coupling between the FM and AFM layers. Besides, through micromagnetic simulations, we investigate and correlate changes in spatial profiles of the PSSWs with the interfacial exchange coupling. As the thickness is increased, we see that the n=1 and n=2 modes begin to couple with the fundamental FMR mode, resulting in asymmetric (with respect the Py layer center) modes. Our results suggest that PSSWs detection in a ferromagnet offers a means of probing the interfacial exchange coupling with the adjacent AFM layer. Furthermore, the controlled spatial symmetry breaking by the AFM layer enables engineering of PSSWs with different spatial profiles in the FM.
Comment: 15 pages, 18 figures