학술논문

The double low-mass white dwarf eclipsing binary system J2102-4145 and its possible evolution
Document Type
Working Paper
Source
Subject
Astrophysics - Solar and Stellar Astrophysics
Language
Abstract
Approximately 150 low-mass white dwarfs, with masses below 0.4Msun, have been discovered. The majority of these low-mass WDs are observed in binary systems as they cannot be formed through single-star evolution within the Hubble time. In this study, we present a comprehensive analysis of the double low-mass WD eclipsing binary system J2102-4145. Our investigation involved an extensive observational campaign, resulting in the acquisition of approximately 28 hours of high-speed photometric data across multiple nights using NTT/ULTRACAM, SOAR/Goodman, and SMARTS-1m telescopes. These observations have provided critical insights into the orbital characteristics of this system, including parameters such as inclination and orbital period. To disentangle the binary components of J2102-4145, we employed the XT GRID spectral fitting method with GMOS/Gemini-South and X-Shooter data. Additionally, we used the PHOEBE package for light curve analysis on NTT/ULTRACAM high-speed time-series photometry data to constrain the binary star properties. Our analysis reveals remarkable similarities between the two components of this binary system. For the primary star, we determined Teff1 = 13688 +- 65 K, log g1 = 7.36 +- 0.01, R1 = 0.0211 +- 0.0002 Rsun, and M1 = 0.375 +- 0.003 Msun, while the secondary star is characterized by Teff2 = 12952 +- 53 K, log g2 = 7.32 +- 0.01, R2 = 0.0203 +- 0.0002 Rsun, and M2 = 0.31 +- 0.003 Msun. Furthermore, we observe a notable discrepancy between Teff and R of the less massive WD compared to evolutionary sequences for WDs from the literature, which has significant implications for our understanding of WD evolution. We discuss a potential formation scenario for this system that might explain this discrepancy and explore its future evolution. We predict that this system will merge in about 800 Myr, evolving into a helium-rich hot subdwarf star and later into a hybrid He/CO WD.